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Abstract. Using tight binding band picture for 2D graphite, and the Hubbard interaction, recently we
obtained a gapless, neutral spin-1 collective mode branch in graphite [Phys. Rev. Lett. 89, 016402]. In this
paper we present a detailed RPA analysis of the Neutron Scattering cross section for this collective mode.
Near K-point and very close to Γ -point, the intensity of neutron scattering peaks vanishes as q3. This is
shown using a simple Dirac cone model for the graphite band structure, which captures the small-q behavior
of the system. As we move away from the Γ - and K-points in the Brillouin zone of the collective mode
momenta, we can identify our collective mode quanta with spin triplet excitons with the spatial extent
of the order of a few to a couple of lattice parameter a, with more or less anisotropic character, which
differs from point to point. We also demonstrate that the inclusion of the long range tail of the Coulomb
interaction in real graphite, does not affect our spin-1 collective mode qualitatively. This collective mode
could be probed at different energy scales by thermal, hot and epithermal neutron scattering experiments.
However, the smallness of the calculated scattering intensity, arising from a reduced form factor of carbon
2pz orbital makes the detection challenging.

PACS. 71.10.Li Excited states and pairing interactions in model systems – 78.70.Nx Neutron inelastic
scattering

Introduction

Graphite is a broad band tight-binding system composed
of hexagonal graphene sheets held together by van der
Waals interaction. This pure carbon system, in spite of a
simplicity in electronic and crystal structure, has a rich
physics and continues to surprise us [1]. The four valence
of each carbon atom is used to form σ and π bonds with
its three neighbors. Novoselov et al. have been able to
prepare an atomically thin layer of carbon in the labo-
ratory [2], paving way for new directions in experimental
studies. Each such a layer is like a giant molecule with
resonating π bonds among many valence-bond configu-
rations [3]. This structure is similar to many interesting
systems such as carbon nano-tubes, buckyball, MgB2 etc.
Within each graphene layer, pz electrons of each carbon
atom can hop from a site to another site. These electrons
are responsible for the formation of π bands which touch
each other at the corners of the Brillouin zone (Fig. 2).

An important question is to understand the nature of
low energy collective excitations in our zero gap planar
p − π bonded graphite. We may approach this question

a e-mail: akbar@imr.edu

in an unconventional fashion starting from organic chem-
istry! Planar p − π bonded molecules form the basis of
organic chemistry, benzene being a first member. Ben-
zene is a mini-graphite in some respects. One can also
view graphite as an end member of planar p − π bonded
molecules – benzene, naphthalene, anthracene, coronene
etc. It is well known [4] that benzene and the above se-
quence have a spin triplet state as their first excited state.
The next excited state is a singlet state nearly 2 eV above
the triplet state for benzene. This remarkable singlet-
triplet splitting, which is missing in simple Huckel the-
ory, is a well known effect of coulomb correlation in p− π
bonded systems.

A natural question is what happens to the triplet and
singlet excitons in graphite, the end member of the above
sequence. In a recent paper we showed that in graphite
the triplet excitons form a well defined band in the entire
Brillouin zone [5]. We view the low energy part of the
above exciton as a spin-1 collective mode in view of its
gapless character. The singlet excitons, on the other hand
form the well known π plasmon (energy ∼ 7 eV) with a
finite gap in the spectrum. Since graphite is also viewed
as a semi-metal, our neutral spin-1 collective mode can be
also viewed as Landau’s ‘Spin-1 Zero Sound’ (SZS).
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Another way to understand the low energy collective
mode in graphite is to go back to Pauling’s resonating
valence bond (RVB) theory of graphite [3]. Pauling as-
sumed a dominant near neighbor singlet p− π bonds and
their resonance to develop a theory of graphite. We know
from recent developments in RVB theory that such a well
developed singlet correlation leads to a quantum spin liq-
uid state. A quantum spin liquid state either has a collec-
tive spin-1 branch or contains spin-half spinon excitations
by quantum number fractionization. Our finding of a gap-
less spin-1 mode qualifies graphite to be a quantum spin
liquid state. The gapless character of the spin-1 branch,
however, makes it a long range RVB state rather than a
short range RVB state as envisaged by Pauling.

Yet another physical picture of our spin-1 collec-
tive mode is as follows. In graphite the valence band is
completely filled and the conduction band is completely
empty. The nature of particle-hole continuum in this sys-
tem is such that a window below the particle-hole contin-
uum opens (see Fig. 4). A Hubbard type on site repulsion
between the electrons is in the spin singlet channel. This
translates into an attraction in particle-hole spin triplet
channel. This can bind an electron and a hole into a spin-1
exciton; this appears as a pole for the spin susceptibil-
ity inside the window which exists below the particle-hole
continuum. There are special band structure reasons as to
why our spin-1 excitations are gapless, which will be ex-
plained in detail below. Use of the short range interaction
for the spin phenomena is justified, since (as in the follow-
ing we will explicitly demonstrate for the case of spin-1
collective mode) inclusion of the long range tail of the in-
teraction does not affect the spin physics qualitatively.

Gapless spin-1 excitation (Goldstone modes) are char-
acteristic of magnetically ordered systems. In the now pop-
ular case of La2CuO4, a 2D quantum antiferromagnet, the
spin-wave bandwidth is of the order of ∼100 meV. But
in the case of graphite, which has no long range mag-
netic order, this gapless spin-1 collective branch (a non-
Goldstone mode) has a wide dispersion ∼0−2 eV (Fig. 5).
This energy range should be compared with triplet exci-
ton of buckyball at ∼1.64 eV [6]. Spin-1 collective mode of
graphite exists everywhere in BZ and since it does not en-
ter the particle-hole continuum, is protected form Landau
damping (decaying into particle-hole pairs). Therefore the
spin-1 collective mode of graphite is long-lived and could
be exploited in coherent transport of spin-only (neutral)
currents through the nano-tubes.

Since the bandwidth of this collective mode is very
large, each energy range should be investigated by dif-
ferent probe. Here we will concentrate on inelastic neu-
tron scattering experiments. In real graphite, there are
very small electron-hole pockets around the K-points of
the order of ∼10−20 meV; they arise from including hop-
ping and spin-orbit coupling effects. Above this energy
range, the collective mode is well isolated from the typical
phonon energies and therefore the neutrons need not to be
polarized. The low energy parts (regions close to Γ -point
in Fig. 5) of the collective mode up to ∼100 meV can
be probed with thermal neutrons. Hot neutrons can con-

centrate on higher energies ∼100−500 meV (around the
Γ -point). The highest energy parts ∼0.5 eV-up-wards (re-
gions midway between Γ−M and midway between Γ−K)
correspond to bound state wave function with spatial ex-
tent of the order of a few unit cell (∼2 Å) and can be
studied by hot and/or epithermal neutrons.

However, an important practical difficulty is the small
value of scattering cross section. As we will see in detail,
the large size of the spin carrying 2pz orbital of carbon
reduces the neutron scattering form factor significantly,
making S(q, ω) rather small in relevant regions in (q, ω)
space. A most appropriate region, where experiment have
better chance for discovering the spin-1 mode is in the re-
gion midway between the Γ and M points in the Brillouin
zone.

In this paper we present the detailed RPA analysis
of the spin susceptibility and the neutron scattering cross
section. The bare value of Hubbard U in graphite is ∼8 eV,
but the renormalized value for stability issues, should be
less than 2.23t ∼ 5.8 eV. We will keep U as a parameter to
be determined by experiment and will report the results
of cross section calculation for U ∼ 5 eV. The organiza-
tion of the paper is as follows. We begin with a review
of band picture of graphene which is essential for under-
standing the nature of the window below the particle-hole
continuum. The RPA formulation of the next section is
applied to tight-binding bands of graphene in later sec-
tions. To get an analytical handle, we exactly obtain the
spin susceptibility within the RPA for model of a single
Dirac cone. This model captures the behavior near the Γ
and K-point. We calculate the intensities of the neutron
scattering peaks for the linearized model and also discuss
the effect of including long range tail of the interaction.
Finally we report the numerical calculation of the inten-
sities of the neutron scattering peaks for entire BZ along
with calculation of the real space profile of the excitonic
wave-function. To be self-contained, in Appendix A, we
review excitonic formulation of the problem.

The tight-binding band structure

Within the tight-binding approximation, and neglecting
the overlap between the 2pz atomic orbitals of neighboring
carbon atoms, the band dispersion of graphene is given by
ε

c/v
k = ±t εk where

εk =

√
√
√
√1 + 4 cos

(√
3kxa

2

)

cos
(
kya

2

)

+ 4 cos2
(
kya

2

)

(1)
where + and − signs correspond to conduction and va-
lence bands, respectively [11,10]. Here a is the length of
translation vector in one of the sub-lattices of graphene:
a =

√
3×(C-C bond length) as depicted in Figure 1. The

above bands touch each other at the K-points (corners) of
the BZ as depicted in Figure 2. Figure 3 shows the DOS
corresponding to the dispersion (1).
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Fig. 1. (left) Lattice structure of a two-dimensional graphene
sheets. It is a bipartite lattice composed of two sub-lattices.
Each sub-lattice is denoted by a different color. The basis vec-

tors of real space lattice are given by �a1 =
√

3a
2
êx + a

2
êy, �a2 =√

3a
2
êx − a

2
êy , where a√

3
is nearest neighbor C-C distance. The

unit cell is denoted by a dotted hexagon and contains two non-
equivalent carbon atoms, belonging to two sub-lattices. (right)

Corresponding reciprocal space is defined by �b1 = 2π
a

( êx√
3
+ êy),

�b2 = 2π
a

( êx√
3
− êy). One possible choice for Brillouin zone (BZ)

is a hexagonal region of the above figure.

Fig. 2. π-bands of graphene along ΓKMΓ loop, at tight-
binding approximation. The M -point is a saddle point and
gives rise to a van-Hov singularity in single-particle DOS. In
this figure energy is in units of t and the horizontal axis de-
notes qa, with a defined in Figure 1.

For later reference, the normalized Bloch orbitals
of graphene at tight-binding approximation are given
by [10,11]

ψ±
k (r) =

1√
N

∑

R∈A

eik.Rφ±k,R(r) (2)

φ±k,R(r) =
1√
2

[

φ(r − R) ± |f(k)|
f(k)

eik.dφ(r − R − d)
]

(3)

with

f(k) = e
i kxa√

3 + 2e−i kxa

2
√

3 cos
(
kya

2

)

(4)

where R runs over one of the sub-lattices of graphene and
R−d refers to carbon atom in neighboring site which lives
in the other sub-lattice. Here φ is normalized pz atomic
orbital.

-3 -2 -1 0 1 2 3
ω

ρ(
ω

)

Fig. 3. The DOS corresponding to tight-binding band equa-
tion (1). The energies are in units of t. The linear behavior for
small energies results form the cone-like features of the band
structure near K-points and the saddle point at M -point is
responsible for the cusp in DOS at |ω| = 1.

The above bands after linearizing around K-points of
the BZ become

εk =
{

+�vF |k| conduction band
−�vF |k| valence band (5)

where �vF =
√

3
2 ta. The DOS associated with this linear

dispersion is given by

ρ(ε) =
1

2π�2v2
F

|ε|.

So the ρ(ε) ∝ |ε| pseudo-gap arises form the linear fea-
tures of the band structure near the K-points. It can be
shown that, within DMFT, this cone-like feature remains
robust against the increase in the on-site repulsion U [12].
Hence the on-site interaction does not destroy the Dirac
cone picture. It only renormalizes the Fermi velocity vF .
Figures 2 and 3 depict the π bands of graphene and their
corresponding DOS.

The RPA spin susceptibility

In order to calculate the contributions to total RPA sus-
ceptibility form different channels, we need the (retarded)
bare susceptibility which is given by

χ0(q, ω) =
1
N

∑

k

fk+q − fk
�ω − (εc

k+q − εv
k) + i0+

(6)

where N is the number of unit cells. At T = 0 the con-
duction band is empty and we have fk+q = 0. At half
filling which is the case for undoped graphene the valence
band is completely filled and we have fk = 1. Therefore
the bare spin susceptibility becomes (energies are in units
of t, unless otherwise specified)

χ0(q, ω) =
1
N

∑

k

−1
�ω − (εc

k+q − εv
k) + i0+

=
1
N

∑

k

1
(εk+q + εk) − �ω − i0+

. (7)
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Using the formula

1
x− i0+

= P 1
x

+ iπδ(x)

the imaginary part of χ0 upon can be written as

Imχ0(q, ω) =
π

N

∑

k

δ
[

�ω − (εc
k+q − εv

k)
]

=
A

4π

∫

BZ

d2k δ [�ω − (εk+q + εk)] (8)

where A =
√

3a2

2 is the area of hexagonal unit cell. Us-
ing Kramers-Kronig relation, the real part of χ0 can be
obtained from the imaginary part

Reχ0(q, ω) =
1
π
P

∫ +∞

−∞
dω′ Imχ

0(q, ω′)
ω′ − ω

. (9)

Particle-hole continuum is a region in ω − q space,
where integrand of equation (8) is none-zero. Outside
of this region, the denominator of the summand which
gives χ0 is none-zero and the integral becomes well-
behaved and easy to perform numerically.

The contribution from the triplet particle-hole channel
to the RPA spin susceptibility (particle-hole ladder sum-
mation) is given by the equation [13]

χ(q, ω) =
χ0(q, ω)

1 − v(q)χ0(q, ω)
(10)

where v(q) is the Fourier component of potential. The
short range part of the interaction is sufficient to account
for the spin phenomena. Hence we use the standard Hub-
bard model for this tight-binding system,

H = −t
∑

〈i,j〉,σ
(c†iσcjσ + c†jσciσ) + U

∑

i

ni↑ni↓ (11)

with repulsive interaction between the particles U > 0.
For this interaction v(q) = U and we have

χ(q, ω) =
χ0(q, ω)

1 − Uχ0(q, ω)
. (12)

The collective mode exists if the above RPA susceptibility
has simple poles. Therefore the collective mode dispersion
is given by solving the set of equations:

Imχ0(q, ω) = 0, Reχ0(q, ω) =
1
U
. (13)

One can see from equation (7) that outside the particle-
hole continuum, where �ω �= εk+q+εk, we have Imχ0 = 0,
i.e. χ0 is purely real. Moreover, below the particle-hole
continuum �ω < εk+q+εk and thus from equation (7) one
can see that Reχ0 = χ0 > 0. This shows that below the
particle-hole continuum, there could be a solution to the
collective mode equations in triplet particle-hole channel.

Hence existence of a window below the particle-hole
continuum provides the unique opportunity for the exis-
tence of a solution to equation (13). Therefore we need to

solve equation (13) numerically. Our strategy is to fix q
and then for a given U look for a value of omega which
fulfills the collective mode criterion, equation (13). Now
let us first review the neutron scattering formulation very
briefly.

Neutron scattering cross section

The neutron scattering cross section is given by

d2σ

dΩdE′ = − 4|ξ+−|2r20
π(1 − e−βω)

k′

k
|F0(q)|2Imχ(q, ω) (14)

where k, k′ are incident and reflected neutron momenta,
ξ+− is a number of order of unity and the atomic form
factor is defined by

F0(q) =
∫

dr |φ(r)|2 eiq.r (15)

and φ(r) is the atomic pz orbital.
Therefor the peak structure of neutron scattering cross

section is reflected in dissipative part of the susceptibility,
with an overall atomic form factor, reflecting the band
nature of electrons involved in the process. The Imχ(q, ω)
includes the effects of interaction among electrons. If we
treat the effect of interaction in RPA approximation,
since the life-time effects are beyond RPA, ImχRPA pos-
sesses isolated sharp peaks at resonance frequencies ωs(q),
that is

ImχRPA(q, ω) ≈ Z(q) δ(�ω − �ωs(q)) (16)

which defines a dimension-less quantity Z(q). By
Kramers-Kronig relation, the above equation is equiva-
lent to

ReχRPA(q, ω) ≈ − 1
π�

Z(q)
ω − ωs(q)

, ω ≈ ωs(q). (17)

Within the RPA, one does not need to perform any fitting
to obtain Z(q). Upon using equation (12), Z(q) can be
obtained in terms of bare susceptibility as

Z(q) =
π�

U2

[
∂

∂ω
Reχ0(q, ω)

]−1

ω=ωs(q)

. (18)

The measured intensity at an angle corresponding to mo-
mentum transfer q, apart from overall factors, is given by

I(q) = |F0(q)|2Z(q). (19)

Now let us discuss the effect of atomic form factors, which
directly affects the intensity of the neutron peaks. For
2pz atomic orbital, we have

φ(r) ∼ z e−Zr/2a0 (20)

where a0 is the Bohr radius and Z is the effective nuclear
charge, which for 2p orbitals in carbon is ≈1.56. Assuming
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that, there is no momentum transfer along the direction
perpendicular to graphene planes, the atomic form factor
becomes

F0(q) =
1

[1 + q2a2
0

Z2 ]3
≈ 1

[1 + q2a2

(7.8)2 ]3
. (21)

Note that a0 ≈ a/5 where a is the lattice parameter as
depicted in Figure 1. For momentum transfers much away
from the center of the BZ, the atomic form factor decreases
very rapidly and therefore the weight of the neutron scat-
tering peak is suppressed by |F0(q)|2.

For high energy part of the collective mode branch,
we will need high energy incident neutron beam. Consid-
ering the neutron kinematics, the lowest q-values which
can be attained (at the lowest possible scattering angles
of ∼2−3 degree) are relatively high, i.e. much higher than
the q-vector of the first Brillouin zone. Hence, one needs
to know the magnitude of the form factor at q-values
from ∼5−12 Å−1 [9] which corresponds to qa ∼ 12−29.5.
The above estimate of the atomic form factor indicates
that, beyond the first BZ, the intensity of peaks is essen-
tially zero! This makes the detection of the high energy
parts a technically demanding task and the appropriate
region of the BZ should be chosen carefully. Keeping this
consideration in mind, after calculating the coefficient of
the delta peaks of Imχ(q, ω) in RPA approximation, we
will suggest the best regions of the BZ (Fig. 6) to be
probed by neutrons.

Simplified model of cone-like bands
in circular BZ

In this section we use the linearized spectrum of equa-
tion (5) as a model to evaluate χ0 analytically [5]. In this
model we assume the BZ is a circle of radius kc which
for the low-energy regime can be thought of as infinity. A
single cone1 at the center of the circular BZ is just an as-
sumption. Note that in real graphite there are two such a
cones. Such a simplified model seems to capture the essen-
tial low-energy physics of band structure (1). The linear
spectrum of equation (5) holds over a fairly large range
of energies (up to ε ∼ 0.5t ∼ 1 eV) which can be seen
qualitatively from the density of states (Fig. 3). Such a
model will be relevant to

• Wave vectors near K-point, of course with modified
parameters such as Fermi velocity vF , etc.

• Wave vectors near Γ -point. The analytical knowledge
gained about the small-q behavior of the dispersion of
spin collective mode will enable us to see the qualita-
tive difference between the case of an isolated graphene
sheet and a real graphite in which the long-range
(small-q) tail of the interaction becomes essential. We
will include these effect analytically and will see that
at Γ -point which is susceptible for instability, the col-
lective mode still survives.

1 A covariant formulation in terms of Dirac spinors, should
take care of 2 cones, 2 chiralities, and 2 spin degrees of freedom,
which requires a 23 = 8 component formalism.
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Fig. 4. Particle-hole continuum of graphite. Horizontal axis is
center of mass momentum of particle-hole pair and vertical axis
is the particle-hole energy. Gray region is the particle-hole con-
tinuum, corresponding to the spectrum given by equation (1).
The energies are in units of t. This is obtained for a fixed q,
by finding the maxima and minima of the particle-hole energy
εq+k + εk for random walker k walking in Brillouin zone.

Moreover, it will teach us a mechanism by which the sys-
tem exhibits certain effective 1D characters. It turns out
that the very same mechanism is responsible for the ex-
istence of the spin collective mode over a large fraction
of BZ area.

Starting with equation (8)

Imχ0(q, ω) =
A

4π

∫

|k|<kc

δ [�ω − �vF (|k + q| + |k|)]

=
A

4π�vF

∫
ds

|∇kfq(k)|fq(k)=z
(22)

where

fq(k) = |k − q| + |k|, z =
ω

vF

and ds is the length element on fq(k) = z. The equation
fq(k) = |k−q|+ |k| = z defines and ellipse with principal
axis equal to q

2 and half canonic distance equal to z
2 = ω

2vF
.

Therefor Imχ0 is none zero if and only if

z > q ⇒ ω > vF q particle-hole continuum. (23)

This result should be compared with Figure 4 around
K-point and Γ -point.

Assuming that φ is the angle between q and k and
k = |k|, the equation of ellipse becomes

k =
z2 − q2

2(z − q cosφ)
(24)
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which gives

dk = −q(z
2 − q2) sinφ

2(z − q cosφ)2
dφ

ds =
√

k2dφ2 + dk2

=
z2 − q2

2(z − q cosφ)2
√

z2 + q2 − 2zq cosφ

|∇kfq(k)| =
2(z − q cosφ)

√

z2 + q2 − 2zq cosφ
. (25)

Putting every thing together we obtain

Imχ0(q, ω) =
z2 − q2

16π�vF

∫
z2 + q2 − 2zq cosφ

(z − q cosφ)3
dφ

=
1

16�vF

2z2 − q2
√

z2 − q2

=
√

3a2

16�v2
F

ω2 − 1
2v

2
F q

2

√

ω2 − v2
F q

2
, qvF < ω < (2kc + q)vF (26)

where in last step we have used A =
√

3
2 a

2 to restore
the lattice parameter a. If we take the limit ω → vF q,
this equation reduces to the edge propagator given by
equation (2) of reference [14]. To obtain the real part, we
use Kramers and Kronig relation, equation(9); along with
change of variables ω′ = qvF coth η, coth η0 = 1+ 2kc

q . To
leading order in 2kc

q we have

Reχ0(q, ω) =
√

3a2

32�πv2
F

∫ 2kcvF

qvF

dω′

ω′ − ω

2ω2 − v2
F q

2

√

ω2 − v2
F q

2

= −
√

3a2q2

32π�

∫ ∞

η0

dη
2 coth2 η − 1

sinh η(ω − qvF coth η)

= −
√

3a2

16π�v2
F

[

ω log
(

4kc

q

)

− qvF

(
2kc

q
+ 1

)

+
q2v2

F − 2ω2

√

q2v2
F − ω2

(

arctan
√
qvF − ω

qvF + ω
− π

2

) ]

+ O
(
q

kc

)

=
√

3kca
2

8π�vF
+

√
3a2

16π�v2
F

2ω2 − q2v2
F

√

q2v2
F − ω2

arctan
√
qvF + ω

qvF − ω

+ O
(

log
kc

q

)

, qvF > ω. (27)

Now going back to equations (13) we see that in region
qvF > ω where the above formula for Reχ0(q, ω) is valid,
the imaginary part is identically zero. So the dispersion of
collective mode is the solution to equation

1
U

=
√

3kca
2

8π�vF
+

√
3a2

16π�v2
F

2ω2 − q2v2
F

√

q2v2
F − ω2

arctan
√
qvF + ω

qvF − ω
.

(28)
Near the particle-hole boundary the RHS of the above
equation can be expanded to obtain (note that �vF =
ta
√

3/2)

1
U

=
kca

4πt
+

√
3a2q3/2

32�
√

2vF
√
qvF − ω

+ O(qvF − ω)1/2. (29)

The above equation has a solution, passing through the
origin for any value of U < U1 = 4πt

kca . To get some idea
about the value of U1, let us choose kc in such a way
that the area of our circular BZ is equal to the area of
hexagonal BZ of the original problem, that is

πk2
c =

8π2

√
3 a2

⇒ kca = 2
(

2π√
3

)1/2

≈ 3.81

which gives U1 =
(

2π
√

3
)1/2

t ≈ 3.30t. Hence to leading
order in qa the dispersion of the spin-1 collective mode
near the Γ -point becomes

ωs(q) = vF q(1 − α2a2q2) = vF q − ωB(q), (30)

as ω → vF q → 0 where

α =
1

8
√

6
UU1

t(U1 − U)
.

Note that equation (30) makes sense only if
∣
∣α2a2q2

∣
∣ 	

1. In particular the smallness of α implies that U must
be below U1 and far enough from it. In fact, numerical
calculations with full band structure shows that for U >
Uc ≈ 2.23 t, an instability emerges around the Γ -point
(see Fig. 5). Since the linear model is relevant to Γ -point
(and also the K-point, but with renormalized vF ), the
requirement of U < U1, warns us about an instability.
However, since the real graphite is stable, the normalized
value of interaction must be less than 2.23 t and we are
not worried about it. Here �ωB is the binding energy of
particle-hole pairs with center of mass momentum equal
to q. The repulsive interaction U among particles becomes
attractive for particle-hole pairs in triplet spin state and
binds them together to form a bound state with binding
energy �ωB. To see why there exists a bound state for
arbitrarily small attraction U , note that, right above the
particle-hole continuum and very close to the continuum
boundary, Imχ0 can be written as

Imχ0(q, ω) =
√

3a2

32�
√

2vF

q3/2

√
ω − qvF

(31)

with a square root divergence at the lower edge of the
particle-hole continuum in ω − q space. This expression
has the same form as the one dimensional density of states
(with energy measured from �qvF ). Note that, in fact,
Imχ0(q, ω) = πρq(ω), where ρq(ω) is the free particle-
hole DOS for a fixed center of mass momentum q. That
is, the particle-hole pairs have a phase space for scatter-
ing which is effectively one dimensional. Thus we have a
bound state of particle-hole pairs in spin-triplet channel
for arbitrarily small interaction U . However, we also have
a pre factor q3/2 which scales the density of states. This
together with the square root divergence of the density of
states at the bottom of the particle-hole continuum gives
us a bound state for every q as q → 0, with the binding
energy vanishing like ∼ q3 as shown above. Equation (31)
shows that region responsible for the formation of spin-
1 zero sound (SZS) near the Γ and K-points, is mainly
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near the bottom of the particle-hole continuum. In fact
for center of mass momenta close to Γ,K-points, there
will be a one dimensional manifold on which the particle-
hole energy has its minimum and this one-dimensional
manifold of minima is responsible for square root diver-
gence in particle-hole DOS. The M -point has a similar
property. These explains why for center of mass momen-
tum corresponding to M -point too, the spin-1 collective
mode is there for arbitrarily small interaction U .

Neutron resonance peaks for the cone model

Plugging equations (27) and (30) into the above equation,
it is straightforward to show that near the Γ and K-point
the peak intensity behaves like

Z(q) =
3π4

4
Ut2

(U1 − U)3

(
q

kc

)3

×
{

1 − 15π2 U2

(U1 − U)2

(
q

kc

)2

+ O
(
q

kc

)3
}

. (32)

This equation shows that for a graphene layer the res-
onance peak residue, Z(q) vanishes as ∼q3, where q is
measured from Γ or K-points of the BZ. The cross sec-
tion for momentum transfers near Γ andK are very small.
Vanishingly small Z(q) according to Appendix A, means
spatially large wave-function which can not be excited by
neutrons with a typical de-Broglie wave-length of ∼1 Å.

Due to the presence of the other graphene layer and
screening arising from the interlayer hopping among the
layers, the power law Z(q) ∼ q3 may change in real
3D graphite. In next subsection, we will discuss the ef-
fect of semi-metallic screening, which amounts to taking
into account the long range tail of the interaction among
the electrons.

Effect of long-ranged part of the interaction

Having established the existence of a gapless spin-1 col-
lective mode branch within Hubbard model and the RPA
approximation, we will discuss whether the semi-metallic
screened interaction of 3D stacked layers will affect our re-
sult. In tight binding situation like ours, the spin physics
is mostly captured by the short range part of the repulsion
among the electrons. So we do not expect a drastic change
in the behavior of spin collective mode, if we correct the in-
teraction, by including long range tails, i.e. modifications
near q = 0.

Interaction, including interlayer scattering between
layers separated by distance d is given by [14,15]

ṽ(ω, q) =
2πe2

ε0q

sinh(qd)
√

[cosh(qd) + 2πe2

ε0q sinh(qd)χ0(ω, q)]2 − 1
.

Let us assume that the asymptotic behavior of ṽ(ω, q) of
the above equation at long wave-lengths is q−ν , where we

will determine the exponent ν self-consistently. From right
hand side of equation (29), we have

Reχ(q, ω) = a+
b qη

√
q − ω

(33)

where η = 3/2, and we have assumed vF = 1. Moreover,
inspired by our previous results, we assume the following
ansatz for the dispersion of the collective mode in presence
of a long range interaction ṽ(ω, q):

ωs(q) = q − cqβ (34)

where a, b, c in above equations are numerical constants
Using the Kramers-Kronig relation, the collective

mode equation becomes

qν ∼ 1
ṽ(q)

= Reχ0(q, ωs(q)) ∼
∫

dω′

ω′ − ωs(q)
qη

√
ω′ − q

= qη

∫
d
√
ω′ − q

ω′ − ωs(q)
= qη

∫
du

u2 + q − ωs(q)

= qη

∫
du

u2 + cqβ
∼ qη−β/2

that gives
β = 2(η − ν). (35)

This equation is important in that, it determines the qual-
itative difference between the dispersion of the collective
mode in graphene and graphite. In our case η = 3/2. The
graphene is characterized by ν = 0, or equivalently β = 3
which is nothing, but equation (30). Since η = 3/2, in
addition to equation (35) we need another equation to de-
termine these exponents self-consistently. This equation
will be provided by Taylor expansion of ṽ(ω, q).

Substituting the ansatz (34) in equation (33), one can
see that Reχ ∼ a+b′qη−β/2 ∼ a+b′qν/2, where in the last
step we have used equation (35). Using the above expres-
sion for Reχ(ω, q) in RHS of defining expression of ṽ(ω, q),
to leading order we obtain:

ṽ(ω, q) ∼ const. = U ′ ⇒ ν = 0. (36)

This equation tells us that as far as the existence of a so-
lution of type (34) in spin channel is concerned, the long
ranged part of the Coulomb interaction in graphite is only
going to renormalize the Hubbard U of a single graphene
layer. Therefore even in presence of a long range interac-
tion, we have β = 3/2, and the qualitative picture result-
ing from the simple Hubbard model for a single graphene
layer is not going to change. At this level, the only quan-
titative difference between a single layer of graphene and
stacks of graphene in real graphite, with their long ranged
Coulomb interaction included, would be in coefficient c of
equation (34).

Let us go back to equation (35) to discuss the impor-
tance of the prefactor qη = q3/2 in DOS of particle-hole
pairs in graphite. The case of strictly one-dimensional
problem corresponds to η = 0. So a none zero η is a pe-
culiar feature of our particular problem which should be
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taken into account in putting 1D-like features in a formal
basis in a bosonization approach. It can be seen from equa-
tion (35) that for the case of a real 1D problem β = −2ν.
Since in semi-metallic and insulator case ν > 0, then
the exponent β becomes negative and hence the expan-
sion (34) makes no sense. Therefor a bare 1D DOS (square
root divergence) is not sufficient to bound electron-hole
pairs together to form spin-1 zero sound (SZS). To con-
clude, both square root and q3/2 pre-factor are essential
to manage a gapless spin-1 collective mode in graphite.

One can also use a similar asymptotic analysis to
reproduce the dependence of Z(q) on q. Differentiating
Kramers-Kronig relation, equation (9) with respect to ω
and using (34) gives

∂

∂ω
χ0(q, ω)

∣
∣
∣
∣
ω=ωs(q)

∼ qη

∫
d
√
ω′ − q

(ω′ − ωs(q))2

∼ qη

∫
du

(u2 + q − ωs(q))2

= qη

∫
du

(u2 + cqβ)2
∼ qη−3β/2.

Using equations (18) and (35) we obtain

Z(q) ∼ q2η−3ν . (37)

The case of a single layer of graphene, and real graphite
correspond to η = 3/2 and ν = 0, with just different pro-
portionality constants which gives rise to q3 dependence in
agreement with equation (32). The above analysis reveals
that, following properties conspire to manage a spin-1 col-
lective mode in a cone model for graphite:
1. Dirac cone spectrum, i.e. a pseudo-gap of the form
g(ε) = |ε| that allows for a window below the particle-
hole continuum and to produce a semi-metallic screen-
ing ṽ(q) ∼ q−1/2 for 3D stack of graphite.

2. Square root divergence of the DOS of free particle-
holes at the edge of particle-hole continuum, accompa-
nied by q3/2 factor that comes form two dimensionality
of the original problem.

Numerical calculation of the weight of neutron
scattering peaks

So far our cone model that was appropriate to describe
the small-q behavior of the collective mode was especially
suitable to address the physics near the Γ -point (and also
K-point, with renormalized parameters), e.g. the ques-
tion of modifications arising form inclusion of the long-
range tail of interaction which arises form the stacks of
graphene layers in real 3D graphite. But for the neutron
scattering experiments, we need to repeat the calculations
in entire BZ. To find the resonance frequencies ωs(q) in
entire BZ, we have to numerically solve for equation (13).
In order to do so we have to perform the summation (7)
or equivalently

Reχ0(q, ω) =
√

3 a2

8π2

∫

BZ

d2k
(εk+q + εk) − �ω

(38)

Fig. 5. The spin-1 collective mode for different values of U .
Note the emergence of instability at Γ -point at U ≈ 2.2. Also
note the asymptotic behavior of the dispersion of the spin-1
collective mode near Γ and K-points. According to analysis of
the single cone model, the collective mode dispersion near these
points asymptotically approaches the continuum boundary. At
M -point the resonance energy is at ∼0.83 × t ≈ 2.0 eV and
is well isolated from the boundary of p-h continuum. Lower
energy regions are toward Γ and K-points. Toward Γ -point
binding energies are larger and better for neutron scattering
as discussed in the text.

where A =
√

3
2 a

2 is the area of units cell. We know form
our analytical solutions that, below a certain value of U ,
the solution to collective mode equation (13) lies below the
particle-hole continuum and asymptotically approaches
the lower boundary of continuum atK and Γ -point. Hence
the denominator of the integrand in the above equation
inside the region in which we must look for the solu-
tions ωs(q) is none zero. Therefore with full band dis-
persion of equation (1), such integrals can be numerically
performed, without any problems. However, numerically
it becomes more and more difficult to get the square root
divergences as we go closer and closer to K-point. This is
because of the pre-factor q3/2 in equation (31).

Figure 5 shows the numerical evaluation of the disper-
sion of spin-1 collective mode for different values of U . As
can be seen in Figure 5, near K-point the collective mode
pole is very close to the continuum boundary. One can fit a
dispersion of type (30) near Γ and K-points, but the coef-
ficients will be different from that given by equation (30).
Since near theK-point the binding energies are very small,
the particle-hole pairs are bound loosely and the spatial
extent of their wave-function is large which makes it diffi-
cult to excite them by neutrons with typical wave-length
λ ∼ Å. Therefore we suggest the neutron scattering ex-
periments, NOT to focus around the K-points. For the
same reason the region very close to Γ -point should be
avoided.

Note that in Figure 5, at M -point, there is a collective
mode pole for any value of U . In fact at this point, the
DOS of free particle-hole pairs diverges as ∼1/

√
ω − 2t,

where 2t corresponds to bottom of the particle-hole
continuum at M . Bindings at M -point and its neighbor-
hood, especially toward Γ , and also the point mid-way
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Fig. 6. Plot of I(q) = |F0(q)|2Z(q) as a function of momen-
tum transfer along ΓM direction. The ΓΓ distance is ≈3 Å−1.
Because of the effective nuclear charge Z = 1.56 for 2pz or-
bitals, the form factor decays very quickly, so that beyond the
first BZ it is almost zero. This figure suggests that the M point
is not suitable for neutron scattering. Since momentum trans-
fers in 2nd − 4th BZ (5 − 12 Å−1) are involved at which peak
intensity is almost zero (see the discussion following Eq. (21)).

between ΓK and region toward Γ are strong enough to
give rise to a particle-hole pairs, with small enough wave
functions that can be excited by thermal hot and epither-
mal neutrons. At M -point, the resonance energy is ∼2 eV,
but since at these energies momentum transfers beyond
the first BZ are involved, the atomic form factor strongly
reduces the intensity of neutron peaks. This makes neu-
tron scattering at M -point a challenge. Therefore despite
the large binding energy, this point is not a good candi-
date to focus the neutron scattering experiments. We will
give a qualitative picture of wave-function in the follow-
ing. Note the emergence of an instability at Γ -point near
Uc ≈ 2.2t. Indeed at the level of a Hartree-Fock mean field
one finds a transition to FM phase at

Uc =
1

χ0(q = 0, ω = 0)
≈ 2.231t.

However, real graphite for which U ∼ 4t − 5t is stable.
So the value of Uc = 2.23t should be an artifact of RPA
approximation, and one expects by going beyond the RPA,
to push Uc above the 2.23t or equivalently to obtain an
screened value of U below 2.23t [16]. Assuming that the
renormalized value of U is less than 2.23t, we will perform
the rest of calculations for U = 2t ∼ 5 eV.

Once we find the location of resonance frequen-
cies ωs(q), the next step is to calculate Z(q). The trick is
to use the formula (18), but with

[
∂

∂ω Reχ0(q, ω)
]

ω=ωs(q)

given by direct differentiation of equation (38), that is

Z(q) =
π

U2

(
∑

k

1
[εk+q + εk − �ωs(q)]2

)−1

(39)

=
8π3

√
3 U2a2

(∫
d2k

[εk+q + εk − �ωs(q)]2

)−1

. (40)
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Fig. 7. The approximate bound state wave-function within
the RPA approximation. The center of mass momentum q is
at 0.2 ΓM ≈ 0.3 Å−1. Unit of length is the lattice parameter
a ≈ 2.46 Å. Contours corresponding to |ψq(r)| > 0.1 have
been plotted in the base. Note a very soft anisotropic pattern
of contours. The normalization of the wave-function is such
that ψq(0) = 1. This figure explicitly demonstrates why at
low energies we have a collective mode. We expect ∼0.5 eV
neutrons to be able to excite such a bound state.

Then using equations (19) and (21) the weight of neu-
tron scattering peaks I(q), can be calculated, which is de-
picted in Figure 6. The maximum value of the I(q) for q
along ΓM , lies between ∼0.1 ΓΓ = 0.2 ΓM ≈ 0.3 Å−1

and ∼0.2 ΓΓ = 0.4 ΓM ≈ 0.6 Å−1. At these wave vectors
the energies of neutrons lie between ∼0.5 eV and ∼1 eV
which are much easier for neutron scattering than ∼2 eV
at the M -point. Profile of the peak intensity along ΓK is
shown in Figure 6. Therefore according to this calculation,
the best chance of detecting spin-1 collective mode, is at
the points between ΓM and ΓK which are closer to Γ ,
than K or M .

Note that for these points, I(q) becomes of the order
of unity and the binding energy are typically �ωB � 1 eV.
For larger values of I(q) it is easier to excite the triplet
exciton. Equation (48) of Appendix A, explicitly shows the
relationship between spatial extent of the excitonic wave-
function and Z(q). The small binding energies correspond
to loosely bound particle-hole pairs and hence large wave-
functions, which is according to (48) synonymous to small
peak intensities. Intuitively speaking, it becomes harder
to excite larger objects by neutrons of wave-length λ ∼ Å.

Very close to Γ -point, according to (32) I(q) ≈ Z(q) ∼
q3 that corresponds to very large wave-functions. However
as one expects form the qualitative behavior of binding
energies (Fig. 5) and also the qualitative behavior of I(q)
(Fig. 6), as q deviates a bit away form Γ -point, the wave-
function becomes of the order of a few lattice constants
and hence visible by neutrons (Fig. 7).

In Figures 7 and 8 the contours show the region in
which |ψq(r)| > 0.1 which roughly corresponds to the spa-
tial extent of the bound-state wave-function. They respec-
tively correspond to q = 0.2×−−→

ΓM and q =
−−→
ΓM . The nor-

malization of the wave-function is such that ψq(r = 0) =
1. As can be seen form comparison of two figures, the spa-
tial extent of the bound-state wave function for center of
mass momentum corresponding toM -point, is of the order
of two unit cells with highly anisotropic nature.
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Fig. 8. The approximate bound state wave-function within the
RPA approximation. The center of mass momentum q is at the
M -point. Unit of length is the lattice parameter a ≈ 2.46 Å.
Contours corresponding to |ψq(r)| > 0.1 have been plotted in
the base. Note the anisotropic pattern of contours. The nor-
malization of the wave-function is such that ψq(0) = 1. At this
point the spatial extent of the bound state wave-function is
not so large and it can be identified with triplet excitons. This
state can not be excited so easily. Since it requires momentum
transfers beyond the first BZ, at which atomic form factors
wash out the neutron peak.

Discussions

Now let us discuss the effect of σ bands. The σ bands
have their minima centered around the Γ -point. If we fit
a quadratic dispersion to LDA data, we find that the in-
clusion of excitation form valence π band to σ band do
not modify the collective mode qualitatively. The height
of the window below the particle-hole continuum of Fig-
ure 4 along the ΓK is not very high. Therefore the excita-
tions to σ do not shrink the window along ΓK. However
around M -point, at which the height of window is 2t, the
inclusion of excitations to σ band, reduce the height by
maximum amount of ∼ 0.5t at the M -point. But as can
be seen from Figure 5, this does not open a decay channel
for the collective mode branch corresponding to normal-
ized U ∼ 2t.

Recently, Peres and coworkers have criticized our
method of calculating the RPA spin susceptibility [19].
We have clarified the issue in detail [20].

In conclusion, we have evaluated the spin susceptibil-
ity of a graphene layer in RPA approximation for a short
range interaction. We obtained a magnetic (spin-1) collec-
tive mode branch in non magnetic phase of graphite which
exists in entire BZ with a very wide energy range form zero
at Γ and K to ∼2 eV near the M -point. This branch is
below the particle-hole continuum and is protected from
Landau damping. Therefore it might provide a mechanism
for transport of spin-only currents, over a wide energy
range. We showed that the long range tail of the Coulomb
interaction in real graphite (3D stacks of graphene) does
not destroy the conclusions drawn from the Hubbard in-
teraction. We also presented the calculation of the weight
of the neutron peaks. The most appropriate region of
the BZ to focus the neutron scattering experiments is re-
gion in between Γ and M and region mid-way between Γ
and K-points (closer to Γ than M or K). Hot or epither-

Fig. 9. ImχRPA(ω) as a function of ω at Q = 0.2ΓM ≈
0.3 Å−1. Note that ω in this figure is in units of t. The particle-
hole continuum is clearly seen in this figure (dashed line). Be-
low the continuum at ωs(Q) ≈ 0.30 t ≈ 0.7 eV a very sharp
peak in ImχRPA shows up (solid line).

mal neutrons (0.1− 1.0 eV) are more appropriate for this
region of momentum transfers. The dynamical form fac-
tor for a typical momentum transfer in the above region
is schematically plotted in Figure 9. At the above men-
tioned regions, in one hand one does not require very high
energy neutrons; on the other hand, the binding is strong
enough to lead to small enough wave-functions which can
be excited with hot or epithermal neutrons.
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Appendix A: Excitonic wave-function
approach to spin collective mode

One can see more closely the relation between the Z(q)
and the binding energies and real space profile of the wave-
function as follows. At the RPA approximation, the eigen-
vector of the exciton state with spin S can be written as a
linear combination of all the product eigenvectors of free
charge carriers created in the crystal [17,18]

|q, S〉ex =
∑

k′
gq(k′) |k′ + q,−k′;S〉 (41)

where we have used the free electron-hole basis |k +
q,−k;S〉 to expand the exciton wave-function. The triplet
one which is relevant to our case is given by

|k + q,−k; 1〉 =
1√
3

(

cc†k+q↑d
v†
−k↑ + cc†k+q↓d

v†
−k↓

)

|0〉

+
1√
6

(

cc†k+q↑d
v†
−k↓ + cc†k+q↓d

v†
−k↑

)

|0〉
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where dv†
−k−σ ≡ cvkσ creates a hole with spin projection −σ

and momentum −k. The exciton eigenvalue problem in
free p-h basis becomes [17]

[Ec(k + q) − Ev(k) −Wq] gq(k)−U
∑

k′
gq(k′) = 0. (42)

Here Ec(k + q) and Ev(k) are total energies of single
particle in conduction and valence band including their
interaction energy with the other electrons of the band.
The interaction between different pairs is included in con-
stant kernel −U [18]. In triplet channel the kernel becomes
a direct Coulomb term and moreover it is attractive.

The RPA approximation amounts to ignore the self-
energy effects and write (i.e. solving a two-body problem)

Ec(k + q) → εc
k+q/2 = εk+q/2 (43)

Ev(k) → εv
k−q/2 = −εk−q/2. (44)

Note that wave-vectors are such that the wave-equation
becomes manifestly time reversal invariant (k → −k), as
can be seen from the wave-equation below

[

εk+q/2 + εk−q/2 − �ωs(q)
]

gq(k) − U
∑

k′
gq(k′) = 0.

Let
∑

k′ gq(k′) = C, solve for gq(k) and sum over k to
obtain the self-consistency equation

C =
∑

k

UC

εk+q/2 + εk−q/2 − �ωs(q)
(45)

which is exactly equivalent to the RPA approximation,
equation (13). The wave-function of the single particle-
hole pair can be approximated by Fourier transform2

of gq(k). Thus we have

ψq(r) =
1
N

∑

k

exp(ik · r)
εk+q/2 + εk−q/2 − �ωs(q)

(46)

=
A

4π2

∫

d2k
exp(ik · r)

εk+q/2 + εk−q/2 − �ωs(q)
(47)

with A, being the unit cell area, which shows that the
wave function is purely real, as it should be. Comparing
equations (39) and (46) shows that

Z−1(q) =
U2

π

∑

k

|gq(k)|2 =
U2

π

∫
d2r
A

|ψq(r)|2 . (48)

2 Since the free particle-hole basis is composed of
Bloch orbitals, therefore the Fourier transform is only an
approximation.

Note that we leave C in equation (45) is left undeter-
mined. The normalization is such that ψq(r = 0) = 1.
Equation (48) shows that the intensity of collective mode
peaks is a measure of inverse spatial extent of the particle-
hole bound state. Smaller particle-hole bound states cor-
responds to sharper neutron scattering peaks.
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14. J. González, F. Guinea, M.A.H. Vozmediano, Phys. Rev.

Lett. 77, 3589 (1996)
15. J. González, F. Guinea, M.A.H. Vozmediano, Nucl.

Phys. B 424, 595 (1994); cond-mat/0007337; D.V.
Khveshchenko, cond-mat/0101306

16. G. Baskaran, S.A. Jafari (to be published)
17. G. Grosso, G. Pastori Parravichini, Solid State Physics

(Academic Press, 2000)
18. J. Singh, The dynamics of excitons, in Solid State Physics,

edited by H. Ehrenreich, D. Turnbull, F. Seitz, Vol. 38
(Academic Press, NY, 1984), p. 295

19. N.M.R. Peres et al., Phys. Rev. Lett. 92, 199701 (2004)
20. G. Baskaran, S.A. Jafari, Phys. Rev. Lett. 92, 199702

(2004)


